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The power equations for diffraction from a single crystal of uniform, but arbitrary, cross-section 
may be solved by numerical procedures to yield secondary extinction coefficients. Calculations are 
carried out and curves are presented for both absorbing and non-absorbing crystals of circular and 
rectangular cross-section at several crystal settings and Bragg angles. I t  is shown that  the extinc- 
tion coefficient for crystals of rectangular cross-section can be quite sensitive to the direction of the 
incident beam relative to the crystal faces; hence, if extinction is severe, the use of a cylindrical 
crystal is indicated. In the cylindrical crystal, the extinction coefficient becomes noticeably 
dependent on the Bragg angle as the extinction becomes more severe. A single-parameter empirical 
extinction correction of the exponential or linear type commonly used cannot then be valid for 
groups of reflections which vary widely in Bragg angle. Only if lo/lc > 0.70 is an extinction co- 
efficient of the type exp (--kit) appropriate. An estimate of the mosaic spread parameter may thus 
be obtained from the less severely extinguished reflections and applied to the more intense reflec- 
tions. The mosaic-spread parameter may also be conveniently estimated from the limiting intensity 
if this is experimentally observed. 

In troduct ion  

The problem of secondary ext inct ion in diffraction 
experiments  has been t rea ted  by several authors.  
(See, for example, Zachariasen (1945), Bacon & Lowde 
(1948), and  James  (1950).) These authors  have gener- 
al ly confined their  theoret ical  t r ea tmen t s  to infinite 
f lat  plates and  their  empirical corrections to one- 
parameter  functions.  Because of the increasing use in 
s t ructure  ref inements  of very  accurate  in tens i ty  
measurements  on single crystals, it  seems of interest  
to examine the  effect of crystal  shape on the  secondary 
ext inct ion coefficient. This is of par t icular  impor tance  
in neutron-diff ract ion studies, where corrections for 
secondary ext inct ion are generally far  more impor t an t  
t h a n  those for absorption.  The reverse is t rue for 
X-rays.  

T h e o r e t i c a l  

We shall consider a crystal  which has uniform cross- 
section in planes parallel  to the  plane defined by  the  
incident  and diffracted beams, the axis of crystal  
ro ta t ion  being t aken  perpendicular  to these planes t.  
We shall fur ther  specify t h a t  the  boundary  curve of 
the cross-section be convex, i.e., there are no possible 
points  of re-entry  for an  emergent  beam. Let  us define 
a Cartesian co-ordinate system (rectangular only if 
20 = 90 °) with an axis n parallel to the incident  beam 
and an axis m parallel to the diffracted beam. The 
angle between the axes is 20 (see Fig. 1). 

* Research carried out under the auspices of the •.S. 
Atomic Energy Commission. 

t The extension to crystals of non-uniform cross-section is 
straightforward, involving integration of the intensity along 
a direction perpendicular to the sections. In the present treat- 
ment, this is accomplished merely by multiplying the resul~ 
for a single section by h, the height of the crystal. 

m 

Fig. 1. Cross-section of arbitrarily shaped crystal specimen 
showing coordinate grid and axes parallel to incident and 
diffracted beams. Heavy full line: entry surface; heavy 
broken line: exit surface. 
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Generalizing the  formulae of Zachariasen (1945), 
we ma y  write 

cOPa/cPm = - (# + a)P~ + aPe - ~Pn + ~Po , I 
Opo/On = _ (t~+a)po+apH -_ . rpo+apn,  ~ (1) 

where 

power per uni t  area in p r imary  beam at  the 
point  (n, m), 
power per uni t  area in diffracted beam at  the 
point  (n, m), 
l inear coefficient of t rue  absorption,  
Q'W(AO), 
QEp with E v a  correction for p r imary  extinc- 
t ion, with which we are not  concerned, 

23F2 
(V~-~m20] cm-1 for equatorial  reflections (neu- 

trons), 
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( e ~" ~2(1 +cos ~ 20)2aF 9. 
Q = \-m-~c 2] -2-V~s:m2-O cm-* for equatorial reflec- 

tions (X-rays), 
V¢ = unit cell volume, 
~t = wavelength of neutrons or X-rays, 
W(AO) = distribution function for mosaic blocks in 

terms of A0, the deviation of a mosaic block 
from the mean Bragg angle 0; 

e, m, c, and F ~ have the usual meanings, z is defined 
as - (# + a) and is always negative. The differen- 
tial equations are to be solved under the 
following boundary conditions: 

Po = P0 ° along ACB, the surface of incidence, 1 
P~ = 0 along DAC, the surface opposite the 

surface of emergence of the diffracted (2) 
b e a m .  

The integrated intensity for the rotating-crystal 
method is then given by 

h d(AO) dn sin 20PH(n~, me) 
Re = ,c , (3) 

Po ° W(AO)d(AO) 

with PH(ns, ms) being the value of Pn  along the 
surface s of the crystal defined by CBD. h is the 
height of the crystal. PH is of course a function of 
A 0 as well as of m and n; hence the integration over 
A0. The integral in the denominator of (3) will be 
unity, as distribution functions are usually so nor- 
realized. The factor sin 20 occurs because of the 
obliqueness of the coordinate system and the fact that  
the power is defined per unit area perpendicular to the 
direction of propagation. Sin 20dn is an infinitesimal 
length perpendicular to m, the direction of Pn. For 
20 = 0 ° or 180 °, sin 20dn must be replaced by the 
appropriate differential. 

In general, the differential equations (1) will be 
difficult to solve. An iterative procedure could be 
used, but the boundary conditions for crystals with 
other than very simple shapes (parallelepipeds with 
faces parallel to n and m) cause this method to 
rapidly become unmanageable. I t  seems that numerical 
integration would be both general and practical. With 
this in mind, we may replace the equations (1) by the 
following difference equations 

PB(n, m) = PH(n, m - 1 ) [ l  + TAm] 1 
+ Po(n, m-1)(~Am , 

J Po(n, m) -- P0(n-1 ,  m)[l+~An] 
+ P ~ ( n -  1, m)(rAn , 

(4) 

where P~ and Po are the values of the power arriving 
in the parallelogram denoted by the point (n, m) on 
a grid of mesh size An x Am (see Fig. 1). Starting from 
the points of the grid near the boundaries A C B  and 
DAC, we may use equations (4) to determine the 

values of PH and P0 at all points of the grid*. In 
particular, we are interested in the values of PH 
at the first points of the grid outside the boundary 
CBD. If we let these values be denoted PB(a), PB(b), 
. . . ,  PH(k), the integrated intensity becomes 

h +oo +c~ , 
R° = f R(AO)d(AO)/f_ (5) 

where 

I?(AO) -- u(a)+P~(k) + 2~ PB (i) An sin 2Or. (6) 
2 i=b 

I t  is generally assumed that W(AO) is a Gaussian 
distribution function with standard deviation U, 
termed the mosaic spread parameter. However, it will 
be convenient here to adopt a simpler form for W (A 0) 
as follows : 

{ 1/2U~/3 if ]AOJ <_ 7]/3 
W(AO) = 0 if [AO] > ~1]/3 . (7) 

For such a distribution function, the integrated in- 
tensity is given simply by 

R ° = h2~1/3 [R (A 0)]11o= o, (8) 

and the integration over AO in equation (5) is no 
longer necessary. The effect of this change in the form 
of W(AO) will be discussed in the Appendix. 

We will define a secondary extinction coefficient by 

E s = R° /Q 'VA,  (9) 

where V is the volume of the crystal and A is a pure 
absorption factor. 
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Fig. 2. Mesh size necessary for indicated error in secondary 
extinction coefficient. Flat  plate of thickness T at  20 = 0% 

* An analog computer  would be especially suited to this 
problem. 

t Other quadrature formulae might well be more suitable 
in a particular case. The trapezoidal formula is chosen here 
for simplicity in illustration. 
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I t  is impor tan t  in performing the integrations to 
choose a mesh size small  enough to obtain the desired 
accuracy in E~. As a guide to the approximate  size 
necessary, Fig. 2 shows n = T/An, the number  of 
subdivisions necessary to obtain E~ with a given per- 
centage error for a f lat  plate of thickness T at a Bragg 
angle of 0 °. I t  will be noted tha t  a very coarse mesh 
can be tolerated if one is willing to accept an error as 
great as 5 % - - a  level which is often comparable to the 
error introduced in exper imental  est imation of the 
intensities. Alternat ively,  one m a y  perform the cal- 
culation for three or more values of An and extrapolate  
to An = O. 

Limiting cases 
For angles 20 = 0 ° or 180 °, in which cases the direc- 

tions of m and n coincide, the differential  equations 
m a y  be integrated in closed form to obtain (at the 
exit  surface) : 

0 °, # =V 0, PH/Po ° = ½ e - g T ( 1 - - e  -2aT) , (10)  

/~ = 0, PE/Po ° = ½(1--e-2"r), (11) 

a sinh (aT) 
180 °, /~ # 0, P H / P o  ° = a cosh ( a T ) - v  sinh (aT) 

with a = (~-aP)½ , (12) 

# = O, PE/Po ° = a T / ( l + a T ) ,  (13) 

where T is the pa th  length through the crystal. For 
a cylindrical  crystal  with diameter  D, we replace T 
by  D cos q~, integrate over T, and, taking note of (9), 
obta in  the following integrals for E.,: 

I~/2 e-,V oos~0(1 _ e - 2 a D  cos cp)COS q~d~ 

0 °, /~ # 0, E~ = ,~o ~.,~/2 

2 a D \  e - 'Èc°s~ cos ~ qd~ 
(14) ,)0 

2 l ~/2 ( 1 - e  -2°Dc°s~) cos TdT,  (15) t t = 0 ,  E ~ = ~  ° 

180 °, /~ # 0, 

i ~/.2 sinh (aD cos ~) cos ~d~  

J0 a cosh (aD cos T ) - ~  sinh (aD cos ~) 
E, = /~ l _ e _ 2 ~ D c o s  ¢ , (16) 

4 ~/~ cos ~ ~d~ (17) 
F = 0 ,  E ~ = ~ j 0  I + a D c o s T "  

All the integrals appearing in (14)-(17) are con- 
venient ly  evaluated by  numerical  methods.  Integral  
(17) can also be evaluated in closed form. The fol- 
lowing expansion is useful for some of the integrals:  

I 
~/~ i7~ oo J 2 n ( i b  ) 
0 e-~C°~c°s Td~ -- Jo(ib)÷ ~ J~(ib)+ ~, 

,,=~ 1 - 4 n  ~ 
(18) 

where Jk (ib) is the Bessel funct ion of order k of the 
pure imaginary  a rgument  ib. For very large and  very  
small  values of the parameters,  certain of the ex- 
pressions simplify.  Table 1 presents values of the para- 

Table 1. Cylindrical crystal; approximate values of E, 
with sufficient conditions for indicated error 

20 ~ Es E r r o r <  2 %  E r r o r <  5 %  

0 ° 0 2/x~(~D (TD > 7 aD > 3 
0 ° 0 exp ( - -8~D/3~)  aD < 0.3 ~D < 0.5 

180 ° 0 4[~(~D a D  > 70 aD > 30 
180 ° 0 exp ( - - 8 q D / 3 n )  (~D < 0.2 aD < 0.4 

aD > 7 aD > 3 
180 ° # 0 2/ t / (a--T)  / tD > 7 /~D > 3 

meters  for which the  indicated approximat ions  are 
val id  to 2% or 5%. These expressions are readi ly 
verified by  series expansion or sum approximat ions  of 
the integrals in (14-(17). 

Applications 
For s implici ty  in presentat ion of results, we shall  
restrict  ourselves in the following to examples with 
/x = 0 (~ = - a ) ;  the calculations for non-vanishing/~ 
are of course as easily carried out. The condition 
# = 0 is often applicable in neutron diffraction. 

(a) Cylindrical crystals 
Values of Es for 20 = 0 ° and 180 ° were obtained as 

described immedia te ly  above, and values for 20 = 
45 ° , 90 ° , and  135 ° were obtained by numerical  inte- 
gration over a grid. The mesh size chosen was such 

I "00 J , i , i 

0"80 

u.j 0.60 
° 

g 
,2 

0"4C - 

20 

• ~- 180 ° 
I~ - 135 ° - 
5: 90 

I 4°5: 
"' 0"20 

0 J J T ~ l I 
0 1 "0 2"0 3"0 

o'D 

Fig. 3. Secondary  ext inc t ion  coefficient for cylindrical  c rys ta l  
a t  var ious  Bragg  angles p lo t t ed  against  ~D = Q ' D W ( A ) ,  
where  W ( A ) =  1/2~V3 if ]AJ <_vV3 and W ( A ) =  0 if 
]A I > ~V3. Er ro r  in Es less than  3%.  
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that  the maximum error in Es is no greater than 3 %. 
(The error is generally in the same direction for all 
points and of the same magnitude for points at dif- 
ferent angles but similar aD.) The results for these five 
angles are plotted in Fig. 3. I t  is to be noted that  the 
extinction coefficients of reflections at different Bragg 
angles vary by only about 3 % at aD = 0-50 (corre- 
sponding to an E~ of approximately 0.7) but that  the 
effect of angle becomes much more important at 
higher intensities. This is an important fact to keep 
in mind if one contemplates the application of em- 
pirical extinction corrections to observed reflections 
which are later to be used in a parameter refinement. 
In practice, one plots Io versus I~ or Io/I~ versus I~ 
to obtain an experimental E~ curve. The present results 
indicate that, for severe extinction, one obtains a 
different curve for every Bragg angle. Therefore, any 
empirical correction which is independent of Bragg 
angle can lead to large errors in E~ and consequently 
in the estimated true intensities of the more intense 
reflections. Fig. 4 indicates the range in possible :i::/I 

2.ool- 

g 1-50 
E m 

1.1.1 

1 "00 

0"5¢ 

Observed cD 
E,(9o °) 

I I I I I 

o ! 
0"1 0"2 0"3 0"4. 0"5 0"6 

0"73 0"64 0"52 0"33 

Fig. 4. Calculated versus observed intensities (intensity is 
proportional to aD ~') for the cylindrical specimen. Shaded 
region represents area of uncer ta in ty  in estimation of cal- 
culated intensity if Bragg angle of reflection is not  taken  
into account. 

estimated corrected intensities (corresponding to the 
range in E~) as a function of the observed intensity. 
The corresponding Es values at 9(% ° are also indicated. 
The seriousness of this is realized when one notes that  
an estimate at the average value of the range may be 
about 50 % in error for an E~ value of 0-30 and as great 
as 10% for an E~ value of 0.55, a situation which is 
not uncommonly encountered in neutron-diffraction 
experiments. 

A further fact to keep in mind when dealing with 
intense reflections is that  the observed intensities 
reach a limit as aD increases, i.e., they become no 

S E T T I I ~ G  O N  S E C O N D A R Y  E X T I N C T I O N  

longer dependent on the value of F ~, but only on the 
size of the crystal, the mosaic spread, and the Bragg 
angle. This saturation phenomenon makes the estima- 
tion of the extinction correction subject to even further 
error. I t  is possible that  one could make use of the 
limiting value of the intensity, if experimentally ob- 
served, to obtain an estimate of ~ which could then 
be used for the calculation of extinction corrections 
for the other reflections. These limiting values are, for 
the step function defined in (7) and no absorption, 

180°: R~im. = 2V3.hD~], ] (19) 
0 °: R ° = V 3.hD~? l i r a .  

This point was very nearly reached for the FeaO 4 
crystal discussed below. 

The above difficulties would seem to render in- 
appropriate the use, in the ordinary way, of severely 
extinguished reflections in the deduction of an em- 
pirical extinction correction. Generally speaking, one 
has in any small range of 20 too few reflections suf- 
fering from a high degree of extinction to permit the 
determination of reasonably accurate correction curves. 
A one-parameter extinction correction would be valid 
to 3 % or better only when the extinction coefficient 
is greater than about 0.70. As noted in Table 1, in this 
range Es may be approximated by 

Es = exp ( -8aD/3~) .  (20) 

(b ) Rectangular crystals 
The situation becomes much worse for crystals 

which do not have a circular cross-section, for Es is 
then a function of crystal setting as well as of the 
Bragg angle. Fig. 5 shows this effect well for crystals 

0"68 0"70 0"70 0-71 

0"81 0"63 0"79 0.82 

0-74 0"67 0-71 0"76 

0"66 0"69 0"69 0"69 

0'57 0"67 0"73 0"62 

F I ~ - ~ 3  I I " v "  I "1 - - '  
0"47 0"61 0.76 0"53 

Fig. 5. Effect of crystal shape and setting on secondary ex- 
tinction. All crystals have same cross-sectional area as 
cylinder with D = 0.50. Rectangles have a/b ratios of 
~, 9, ~, ~, and -~-. The arrows indicate the directions of 
incident and diffracted beams, and the numbers immediately 
below each crystal are the values of Es. 
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of the same cross-sectional area as a cylinder with 
a D - - 0 . 5 0 ,  where, it will be recalled, the variation 
due to change in Bragg angle alone is about 3%. 
The values for a square pillar are close to those for a 
cylinder and show about the same angle variation. 
However, as the ratio of thickness to width departs 
from unity, the situation rapidly degenerates, the 
errors being, as expected, most dependent on crystal 
setting at very low and very high Bragg angles. 

I t  would seem tha t  if one wishes to make an em- 
piricaI extinction correction with the most accuracy 
possible, the best procedure would be as follows: 

(1) Use a cylindrical crystal. 
(2) Determine a value for ~ from the less severely 

extinguished reflections (in the region where 
there is little dependence on Bragg angle: 
E, > 0-70) by applying equation (20) or its 
generalization to the case of finite absorption. 

(2a) Alternatively, determine by equations (19) a value 
of ~] from the limiting intensities, if these are 
observed. I t  would be comforting if the two values 
checked. 

(3) Using the ~ obtained from step (2) or (2a), use 
the calculated curves or suitable extensions of 
these to obtain extinction corrections for reflec- 
tions in the intermediate range. 

If other than equatorial reflections are to be mea- 
sured, one would do better to employ a spherical 
crystal. E,  for such a crystal may be easily calculated 
from the corrections for a cylinder by numerical inte- 
gration along a diameter of the sphere perpendicular 
to the sections, D in the above expressions now being 
taken to be the diameter of a circular slice at  various 
depths in the crystal. 

E x p e r i m e n t a l  

We have recently measured by neutron diffraction the 
intensities of all (hhl) reflections with sin 0/~t < 0.88 
for a synthetic single crystal of FesO 4 which shows 
particularly severe extinction. The crystal used is a 
pillar with a rectangular cross-section 1 ram. x 1.8 mm. 
perpendicular to the [110] axis. Absorption in the 
specimen was negligible. Application of equation (20) 
(taking D as 1.5 ram.) to the low-intensity data led 
to a mosaic spread parameter ~ of 11.5 sec. Fig. 6(a) 
is a plot of Io versus Ic for all reflections with I -- 
F~/sin 20 < 100 before and after the corresponding 
extinction correction was applied. The limiting in- 
tensi ty for reflections with 20 near 90 ° seemed to be 
about 400. Assuming tha t  the limiting value for 90 ° 
is the average of the limiting values for 0 ° and 180 °. 
application of (19) gives a mosaic spread parameter of 
13 see. in excellent agreement with the value obtained 
from the low-intensity data. Fig. 6(b) is a log-log plot 
of _To versus Ic for all reflections observed with I > 10, 
The curves are calculated for a cylinder of equivalent 
cross-sectional area with U -- 12 sec. The agreement 
seems to be all tha t  could be expected from the shape 
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Fig. 6. Observed  versus  ca lcula ted  intensi t ies  for (hhl) reflec- 
t ions of FeaO 4 single crys ta l  of rec tangular  cross-section,  
1 ram. × 1.8 ram. The s t ra ight  lines represent  per fec t  agree-  
ment .  

(a) Low- in tens i ty  reflections.  Crosses: raw obse rved  in- 
tensi t ies ;  do ts :  correc ted  b y  Es ---- exp (--0"0021Ic). 

(b) log- log  p lo t  of -To versus  Ic for  all reflections. Curves 
are ca lcula ted  for a cylindrical  crys ta l  wi th  the  same cross- 
sectional  area  as t h a t  of the  real c rys ta l  and  wi th  a mosaic  
spreoxi p a r a m e t e r  ~ equal  to  12 sec. The ba r  a t  Ic = 200 
represents  the  addi t ional  spread  in poin ts  which could arise 
because  of the  dev ia t ion  of the  crys ta l  shape  f rom t h a t  of 
the  ideal cylinder.  

of the crystal; the bar at I c ---200 (aD = 0.50), for 
example, represents the additional variation which 
could come because of the departure of the crystal 
shape from the ideal cylinder. The limiting behavior 
at high intensities is clearly seen. 

Because of the relatively small number of high 
intensity reflections, and because of the departure of 
the crystal shape from the ideal cylindrical form, no 
convincing smooth curves could be drawn for separate 
Bragg angles, although detailed calculations for a few 
of the reflections did agree qualitatively with the ex- 
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t inct ion ratios indicated in Fig. 5 for rectangles with 
an a/b ratio of 2/1. 

I t  should be noted tha t  several reflections with 
magnetic  contributions are omit ted from Figs. 6(a) 
and 6(b). These reflections had  in every case inten- 
sities less t han  would be calculated from the curves 
which fit  the  pure nuclear peaks well. Consideration 
of the effect of beam polarization in conjunction with 
ext inct ion effects indicates tha t  this is precisely the 
behavior to be expected, and a detailed discussion of 
this  will be the subject  of a subsequent  communica- 
tion. This behavior  will be observed in an unmagnet-  
ized crystal  only if p r imary  extinction is also present. 
One is thereby led to the conclusion tha t  par t  of the 
extinction observed here is p r imary  extinction, the 
amount  of which is, however, somewhat  less t han  the 
amount  of secondary extinction. As the p r imary  and 
secondary extinction curves are quite similar  at  low 
intensities, and as relat ively few high-intensi ty  reflec- 
tions were observed, it is not surprising tha t  a reason- 
able fit  to the data  was obtained by assuming tha t  the 
extinction is ent irely secondary ext inct ion;  however, 
the value of v/ derived is probably  not a true mosaic- 
spread parameter  bu t  ra ther  a parameter  depending 
on both the mosaic spread and size of the mosaic 
blocks. 

A P P E N D I X  

(a)  A b s o r p t i o n  e f f e c t s  

In  the above, we have t reated numerical ly  only 
examples with negligible true absorption. This is often 
quite adequate  for neutron-diffraction work. Where 
absorption is important ,  one should calculate a set of 

1 "00 

25 
0"80 
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3 
0"40 
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1 

0"20 - 0 _ 

0 I I I I I 
0 1 2 3 4 5 

o'D 

Fig. 7. Effect of absorption on the secondary extinction co- 
efficient. Curves calculated for 20 = 180 ° and values of 
teD ranging from 0 to 100. 

ext inct ion correction curves for the  absorption co- 
efficient characterizing the mater ia l  with which one 
is working. I t  would not seem desirable at  the present 
t ime to prepare tables covering a wide range in both 
~D and /~D. As the absorption coefficient becomes 
larger, the importance of ext inct ion becomes less. 
Fig. 7 il lustrates the behavior at 2 0 - - 1 8 0  °. I t  will 
be noted tha t  for /~ >> a, E~ is approximate ly  equal 
to 1-a[~ (compare Table 1). 

(b)  S h a p e  of  t h e  d i s t r i b u t i o n  f u n c t i o n  

The general effect of replacing the  step distr ibution 
funct ion W(AO) given in equat ion (7) by  a Gaussian 
distr ibution function with the same s tandard  deviat ion 
is indicated in Table 2. Although the values of E,  are 

Table 2. Extinction coefficients for cylinder as functions 
of shape of mosaic-distribution function, intensity, and 

.Bragg angle 
Es for Q'D/2I/3.z/= 

^ 

"0.50 1.00 2-0() 20 W(AO) 
0 ° Step 0.68 0.49 0.30 
0 ° Gaussian 0.69 0.52 0.34 

180 ° Step 0.71 0-55 0.38 
180 ° Gaussian 0-72 0.57 0-42 

significantly different for high intensities, the effects 
on the qual i ta t ive considerations of the previous sec- 
t ions are unimportant .  Furthermore,  even the  quan- 
t i ta t ive effects can be largely accounted for by  a 
simple change in scale of aD, i.e., the mosaic-spread 
parameter  assigned in a part icular  case would depend" 
on the shape of the distr ibution funct ion assumed, but  
the  general fit  to the exper imental  da ta  would be 
equal ly good in either case. As the one-parameter  
mosaic distr ibut ion is probably  a ra ther  inadequate  
description of the micro-structure of the  crystal  in 
any  case, it  would seem convenient to re ta in  the sim- 
pler description of this fo rm- - the  rectangular  distribu- 
t ion funct ion-- for  calculations of the type described 
in this paper. We have here derived expressions and  
curves in terms of ~ = QW(AO), and, from these 
values, the values for any  type of dis tr ibut ion funct ion 
m a y  be readily synthesized. 
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