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The Effect of Crystal Shape and Setting on Secondary Extinction*
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The power equations for diffraction from a single crystal of uniform, but arbitrary, cross-section
may be solved by numerical procedures to yield secondary extinction coefficients. Calculations are
carried out and curves are presented for both absorbing and non-absorbing crystals of circular and
rectangular cross-section at several crystal settings and Bragg angles. It is shown that the extinc-
tion coefficient for crystals of rectangular cross-section can be quite sensitive to the direction of the
incident beam relative to the crystal faces; hence, if extinction is severe, the use of a cylindrical
crystal is indicated. In the cylindrical crystal, the extinction coefficient becomes noticeably
dependent on the Bragg angle as the extinction becomes more severe. A single-parameter empirical
extinction correction of the exponential or linear type commonly used cannot then be valid for
groups of reflections which vary widely in Bragg angle. Only if I,/I, > 0-70 is an extinction co-
efficient of the type exp (—kI;) appropriate. An estimate of the mosaic spread parameter may thus
be obtained from the less severely extinguished reflections and applied to the more intense reflec-
tions. The mosaic-spread parameter may also be conveniently estimated from the limiting intensity
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if this is experimentally observed.

Introduction

The problem of secondary extinction in diffraction
experiments has been treated by several authors.
(See, for example, Zachariasen (1945), Bacon & Lowde
(1948), and James (1950).) These authors have gener-
ally confined their theoretical treatments to infinite
flat plates and their empirical corrections to one-
parameter functions. Because of the increasing use in
structure refinements of very accurate intensity
measurements on single crystals, it seems of interest
to examine the effect of crystal shape on the secondary
extinction coefficient. This is of particular importance
in neutron-diffraction studies, where corrections for
secondary extinction are generally far more important
than those for absorption. The reverse is true for
X-rays.

Theoretical

We shall consider a crystal which has uniform cross-
section in planes parallel to the plane defined by the
incident and diffracted beams, the axis of crystal
rotation being taken perpendicular to these planest.
We shall further specify that the boundary curve of
the cross-section be convex, i.e., there are no possible
points of re-entry for an emergent beam. Let us define
a Cartesian co-ordinate system (rectangular only if
20 = 90°) with an axis n parallel to the incident beam
and an axis m parallel to the diffracted beam. The
angle between the axes is 20 (see Fig. 1).

* Research carried out under the auspices of the U.S.
Atomic Energy Commission.

t The extension to crystals of non-uniform cross-section is
straightforward, involving integration of the intensity along
a direction perpendicular to the sections. In the present treat-
ment, this is accomplished merely by multiplying the result
for a single section by h, the height of the crystal.

Fig. 1. Cross-section of arbitrarily shaped crystal specimen
showing coordinate grid and axes parallel to incident and
diffracted beams. Heavy full line: entry surface; heavy
broken line: exit surface.

Generalizing the formulae of Zachariasen (1945),
we may write

oPglom = —(u+0)Py+0Py= 1Pg+oP,, )
oP,/on —(u+0)Py+0oPy = tPy+cePy,

f

where

P, = power per unit area in primary beam at the
point (n, m),

Py = power per unit area in diffracted beam at the
point (n, m),

4 = linear coefficient of true absorption,

g = Q’W(A 6),

Q' = QE, with E, a correction for primary extinc-
tion, with which we are not concerned,

A -1 1 torial reflecti

Q = (m) c¢m~! for equatorial reflections (neu-

trons),
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Q = (i?) %Oggf;—g—r— c¢m~! for equatorial reflec-
tions (X-rays),

V., = unit cell volume,

A = wavelength of neutrons or X-rays,

W (46) = distribution function for mosaic blocks in
terms of A6, the deviation of a mosaic block
from the mean Bragg angle 0;

e, m, ¢, and F2 have the usual meanings, 7 is defined
as — (u+o0) and is always negative. The differen-
tial equations are to be solved under the
following boundary conditions:

P, = P,° along ACB, the surface of incidence,

Py =0 along DAC, the surface opposite the
surface of emergence of the diffracted
beam.

@)

The integrated intensity for the rotating-crystal
method is then given by

+o0 np
kS d(AG)S dn sin 20P,, (n,, m,)
R = 2o (3)
P;S W (46)d(A46)

—oQ0

with Py(n, m,) being the value of Py along the
surface s of the crystal defined by CBD. h is the
height of the crystal. P, is of course a function of
A0 as well as of m and =; hence the integration over
A6. The integral in the denominator of (3) will be
unity, as distribution functions are usually so nor-
malized. The factor sin 20 occurs because of the
obliqueness of the coordinate system and the fact that
the power is defined per unit area perpendicular to the
direction of propagation. Sin 20dn is an infinitesimal
length perpendicular to m, the direction of Pg. For
260 = 0° or 180° sin 20dn must be replaced by the
appropriate differential.

In general, the differential equations (1) will be
difficult to solve. An iterative procedure could be
used, but the boundary conditions for crystals with
other than very simple shapes (parallelepipeds with
faces parallel to n and m) cause this method to
rapidly become unmanageable. It seems that numerical
integration would be both general and practical. With
this in mind, we may replace the equations (1) by the
following difference equations

Pg(n,m) = Pg(n, m—1)[1+14m]

+ Py(n, m—1)cdm , @)
Py(n—1, m)[1+14n)

+Py(n—1, m)cdn ,

Po(n: m) =

where Py and P, are the values of the power arriving
in the parallelogram denoted by the point (n, m) on
a grid of mesh size Anx Am (see Fig. 1). Starting from
the points of the grid near the boundaries 4CB and
DAC, we may use equations (4) to determine the

values of Py and P, at all points of the grid*. In
particular, we are interested in the values of Py
at the first points of the grid outside the boundary
CBD. If we let these values be denoted Py(a), Pg(b),
..., Py(k), the integrated intensity becomes

“we)aue), ()

—0o0

R h§+°°R(Ae)d(Ae) / S+

where T
P Pyk) 1 . .
R(A6) = [M + 3 Pg (z)] An sin 260t. (6)
i=b

It is generally assumed that W(40) is a Gaussian
distribution function with standard deviation 7,
termed the mosaic spread parameter. However, it will
be convenient here to adopt a simpler form for W (A46)
as follows:

W(A6)={ 1203 i |46] < ny3

7

0 i |46]> 3. )

For such a distribution function, the integrated in-
tensity is given simply by

R? = h2nY/3[R(46)ls6-0 » (8)

and the integration over 40 in equation (5) is no

longer necessary. The effect of this change in the form

of W(A0) will be discussed in the Appendix.
We will define a secondary extinction coefficient by

E, = R|QVA, (9)

where V is the volume of the crystal and A is a pure
absorption factor.
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Fig. 2. Mesh size necessary for indicated error in secondary
extinction coefficient. Flat plate of thickness T at 26 = 0°.

* An analog computer would be especially suited to this
problem.

1 Other quadrature formulae might well be more suitable
in a particular case. The trapezoidal formula is chosen here
for simplicity in illustration.
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It is important in performing the integrations to
choose a mesh size small enough to obtain the desired
accuracy in E,. As a guide to the approximate size
necessary, Fig. 2 shows n = T[An, the number of
subdivisions necessary to obtain K, with a given per-
centage error for a flat plate of thickness 7' at a Bragg
angle of 0°. It will be noted that a very coarse mesh
can be tolerated if one is willing to accept an error as
great as 59 —a level which is often comparable to the
error introduced in experimental estimation of the
intensities. Alternatively, one may perform the cal-
culation for three or more values of An and extrapolate
to dn = 0.

Limiting cases

For angles 20 = 0° or 180°, in which cases the direc-
tions of m and n coincide, the differential equations
may be integrated in closed form to obtain (at the
exit surface):

0°, 4+ 0, PylPy =} T(1—e"%T),  (10)
u =0, Pg/PP = }(1—e %7, (11)
o o o sinh (aT)
180° u +0, Pp/Py" = a cosh (aT')—7 sinh (aT)
with a = (12—02)t, (12)
n =0, Pg/P’ = 0oT/(1+0T), (13)

where T is the path length through the crystal. For
a cylindrical crystal with diameter D, we replace T
by D cos ¢, integrate over ¢, and, taking note of (9),
obtain the following integrals for E:

e7[2
S e—,uD cos rp(l _8—20'1) cos rp) cos (Pd(P

00, ,u :': 0, -Es = 0 o2 })
20DS e D e%S? cog? pd
0 e
2 2 —2¢D cos ¢
uw =0, Eg=mgo (1—e® ) cos pdp ,  (15)
180°, u + O,
S"/2 sinh (aD cos @) cos pdg
a cosh (aD cos ¢)—7 sinh (aD cos p)
E: == ”/2<1_e—2/zl) cosq:) . »  (16)
——=——)cos
So 2u vy
4 ("% cos? pdp
= =\ —TrFr 17
p=0 L nSO 1+6D cos ¢ (17

All the integrals appearing in (14)-(17) are con-
veniently evaluated by numerical methods. Integral
(17) can also be evaluated in closed form. The fol-
lowing expansion is useful for some of the integrals:

onf2 . 7;7[ . oo J’2 (’bb)
—bcos = — “
So e ? cos pdp = Jy(1b) + ) Jl(zb)+"2=,'1 T4
(18)
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where J,(¢b) is the Bessel function of order % of the
pure imaginary argument ¢b. For very large and very
small values of the parameters, certain of the ex-
pressions simplify. Table 1 presents values of the para-

Table 1. Cylindrical crystal; approximate values of E,
with sufficient conditions for indicated error

20 u E; Error < 29% Error < 59%,
0° 0 2/naD oD > 17 oD >3
0° 0 exp (—80D/3n) oD < 0-3 oD < 05
180° 0 4/neD oD > 70 oD > 30
180° 0 exp (—80D|[3x) oD < 0-2 oD < 04
o al > 17 aD > 3
180° =0 2ul(a—1) uD > 17 uD > 3

meters for which the indicated approximations are
valid to 29, or 5%. These expressions are readily
verified by series expansion or sum approximations of
the integrals in (14—(17).

Applications

For simplicity in presentation of results, we shall
restrict ourselves in the following to examples with
4 = 0 (v = —0); the calculations for non-vanishing u
are of course as easily carried out. The condition
# = 0 is often applicable in neutron diffraction.

(a) Cylindrical crystals

Values of E, for 260 = 0° and 180° were obtained as
described immediately above, and values for 20 =
45°, 90°, and 135° were obtained by numerical inte-
gration over a grid. The mesh size chosen was such
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&
v
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] B 135°
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%
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0 1 I ! : I
0 1-0 2:0 3-0
oD

Fig. 3. Secondary extinction coefficient for cylindrical crystal
at various Bragg angles plotted against oD = Q'DW(4),
where W(4) = 1/2ny3 if |4] < ny3 and W(d4) = 0 if
|4| > ny38. Error in E; less than 3%.
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that the maximum error in E is no greater than 3 %.
(The error is generally in the same direction for all
points and of the same magnitude for points at dif-
ferent angles but similar ¢D.) The results for these five
angles are plotted in Fig. 3. It is to be noted that the
extinetion coefficients of reflections at different Bragg
angles vary by only about 39% at ¢D = 0-50 (corre-
sponding to an E; of approximately 0-7) but that the
effect of angle becomes much more important at
higher intensities. This is an important fact to keep
in mind if one contemplates the application of em-
pirical extinction corrections to observed reflections
which are later to be used in a parameter refinement.
In practice, one plots I, versus I, or I,/I, versus I,
to obtain an experimental B, curve. The present results
indicate that, for severe extinction, one obtains a
different curve for every Bragg angle. Therefore, any
empirical correction which is independent of Bragg
angle can lead to large errors in E; and consequently
in the estimated true intensities of the more intense
reflections. Fig. 4 indicates the range in possible
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Fig. 4. Calculated versus observed intensities (intensity is
proportional to ¢D?) for the cylindrical specimen. Shaded
region represents ares of uncertainty in estimation of cal-
culated intensity if Bragg angle of reflection is not taken
into account.

estimated corrected intensities (corresponding to the
range in E;) as a function of the observed intensity.
The corresponding E, values at 90° are also indicated.
The seriousness of this is realized when one notes that
an estimate at the average value of the range may be
about 509, in error for an E; value of 0-30 and as great
as 109 for an E, value of 0-55, a situation which is
not uncommonly encountered in neutron-diffraction
experiments.

A further fact to keep in mind when dealing with
intense reflections is that the observed intensities
reach a limit as oD increases, i.e., they become no

longer dependent on the value of F2, but only on the
size of the crystal, the mosaic spread, and the Bragg
angle. This saturation phenomenon makes the estima-
tion of the extinction correction subject to even further
error. It is possible that one could make use of the
limiting value of the intensity, if experimentally ob-
served, to obtain an estimate of # which could then
be used for the calculation of extinction corrections
for the other reflections. These limiting values are, for
the step function defined in (7) and no absorption,

180°: Rf, = 2y/3.hDy,
0°: R, = V3.hDy.

This point was very nearly reached for the Fe,O,
crystal discussed below.

The above difficulties would seem to render in-
appropriate the use, in the ordinary way, of severely
extinguished reflections in the deduction of an em-
pirical extinction correction. Generally speaking, one
has in any small range of 20 too few reflections suf-
fering from a high degree of extinction to permit the
determination of reasonably accurate correction curves.
A one-parameter extinction correction would be valid
to 39, or better only when the extinction coefficient
is greater than about 0-70. As noted in Table 1, in this
range E, may be approximated by

E, = exp (—80D|3n) .

19)

(20)

(6) Rectangular crystals

The situation becomes much worse for crystals
which do not have a circular cross-section, for E is
then a function of crystal setting as well as of the
Bragg angle. Fig. 5 shows this effect well for crystals
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Fig. 5. Effect of crystal shape and setting on secondary ex-
tinction. All crystals have same cross-sectional area as
cylinder with D = 0-50. Rectangles have a/b ratios of
4,2, 1,1 and 1. The arrows indicate the directions of
incident and diffracted beams, and the numbers immediately
below each crystal are the values of K.
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of the same cross-sectional area as a cylinder with
oD = 0-50, where, it will be recalled, the variation
due to change in Bragg angle alone is about 39%.
The values for a square pillar are close to those for a
cylinder and show about the same angle variation.
However, as the ratio of thickness to width departs
from unity, the situation rapidly degenerates, the
errors being, as expected, most dependent on crystal
setting at very low and very high Bragg angles.

It would seem that if one wishes to make an em-
pirical extinction correction with the most accuracy
possible, the best procedure would be as follows:

(1) Use a cylindrical crystal.

(2) Determine a value for # from the less severely
extinguished reflections (in the region where
there is little dependence on Bragg angle:
E, > 0-70) by applying equation (20) or its
generalization to the case of finite absorption.

(2a) Alternatively, determine by equations (19) a value
of » from the limiting intensities, if these are
observed. It would be comforting if the two values
checked.

(3) Using the % obtained from step (2) or (2a), use
the calculated curves or suitable extensions of
these to obtain extinction corrections for reflec-
tions in the intermediate range.

If other than equatorial reflections are to be mea-
sured, one would do better to employ a spherical
crystal. B, for such a crystal may be easily calculated
from the corrections for a cylinder by numerical inte-
gration along a diameter of the sphere perpendicular
to the sections, D in the above expressions now being
taken to be the diameter of a circular slice at various
depths in the crystal.

Experimental

We have recently measured by neutron diffraction the
intensities of all (hkl) reflections with sin /4 < 0-88
for a synthetic single crystal of Fe,0, which shows
particularly severe extinction. The crystal used is a
pillar with a rectangular cross-section 1 mm. x1:8 mm.
perpendicular to the [110] axis. Absorption in the
specimen was negligible. Application of equation (20)
(taking D as 1-5 mm.) to the low-intensity data led
to a mosaic spread parameter % of 11-5 sec. Fig. 6(a)
is a plot of I, versus I, for all reflections with I =
F2[sin 26 < 100 before and after the corresponding
extinction correction was applied. The limiting in-
tensity for reflections with 26 near 90° seemed to be
about 400. Assuming that the limiting value for 90°
is the average of the limiting values for 0° and 180°.
application of (19) gives a mosaic spread parameter of
13 sec. in excellent agreement with the value obtained
from the low-intensity data. Fig. 6(b) is a log-log plot
of I, versus I, for all reflections observed with I > 10,
The curves are calculated for a cylinder of equivalent
cross-sectional area with 7 = 12 sec. The agreement
seems to be all that could be expected from the shape
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Fig. 6. Observed versus calculated intensities for (hhl) reflec-
tions of Fey,O, single crystal of rectangular cross-section,
1 mm. x 1-8 mm. The straight lines represent perfect agree-
ment.

(@) Low-intensity reflections. Crosses: raw observed in-
tensities; dots: corrected by E; = exp (—0-00211,).

(&) log~log plot of I, versus I, for all reflections. Curves
are calculated for a cylindrical crystal with the same cross-
sectional area as that of the real crystal and with a mosaic
spread parameter 7 equal to 12 sec. The bar at 7, = 200
represents the additional spread in points which could arise
because of the deviation of the crystal shape from that of
the ideal cylinder.

of the crystal; the bar at I, = 200 (¢D = 0-50), for
example, represents the additional variation which
could come because of the departure of the crystal
shape from the ideal cylinder. The limiting behavior
at high intensities is clearly seen.

Because of the relatively small number of high
intensity reflections, and because of the departure of
the crystal shape from the ideal cylindrical form, no
convincing smooth curves could be drawn for separate
Bragg angles, although detailed calculations for a few
of the reflections did agree qualitatively with the ex-
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tinction ratios indicated in Fig. 5 for rectangles with
an a/b ratio of 2/1.

It should be noted that several reflections with
magnetic contributions are omitted from Figs. 6(a)
and 6(b). These reflections had in every case inten-
sities less than would be calculated from the curves
which fit the pure nuclear peaks well. Consideration
of the effect of beam polarization in conjunction with
extinction effects indicates that this is precisely the
behavior to be expected, and a detailed discussion of
this will be the subject of a subsequent communica-
tion. This behavior will be observed in an unmagnet-
ized crystal only if primary extinction is also present.
One is thereby led to the conclusion that part of the
extinction observed here is primary extinction, the
amount of which is, however, somewhat less than the
amount of secondary extinction. As the primary and
secondary extinction curves are quite similar at low
intensities, and as relatively few high-intensity reflec-
tions were observed, it is not surprising that a reason-
able fit to the data was obtained by assuming that the
extinction is entirely secondary extinction; however,
the value of # derived is probably not a true mosaic-
spread parameter but rather a parameter depending
on both the mosaic spread and size of the mosaic
blocks.

APPENDIX

(a) Absorption effects

In the above, we have treated numerically only
examples with negligible true absorption. This is often
quite adequate for neutron-diffraction work. Where
absorption is important, one should calculate a set of

1-00 770
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0-20 0 _
0 ] 1 ] | |
0 1 2 4 5

3
oD
Fig. 7. Effect of absorption on the secondary extinction co-

efficient. Curves calculated for 260 = 180° and values of
uD ranging from 0 to 100,

extinction correction curves for the absorption co-
efficient characterizing the material with which one
is working. It would not seem desirable at the present
time to prepare tables covering a wide range in both
oD and uD. As the absorption coefficient becomes
larger, the importance of extinction becomes less.
Fig. 7 illustrates the behavior at 20 = 180°. It will
be noted that for u > o, E; is approximately equal
to 1—co/u (compare Table 1).

(b) Shape of the distribution function

The general effect of replacing the step distribution
function W(46) given in equation (7) by a Gaussian
distribution function with the same standard deviation
is indicated in Table 2. Although the values of E| are

Table 2. Extinction coefficients for cylinder as functions
of shape of mosaic-distribution function, tniensity, and

Bragg angle
E, for Q'D[2y3.n=
20 w(406) 0-50 1-00 2-00
0° Step 0-68 0-49 0-30
0° Gaussian 0-69 0-52 0-34
180° Step 0-71 0-55 0-38
180° Gaussian 0-72 0-57 0-42

significantly different for high intensities, the effects
on the qualitative considerations of the previous sec-
tions are unimportant. Furthermore, even the quan-
titative effects can be largely accounted for by a
simple change in scale of gD, i.e., the mosaic-spread
parameter assigned in a particular case would depend
on the shape of the distribution function assumed, but
the general fit to the experimental data would be
equally good in either case. As the one-parameter
mosaic distribution is probably a rather inadequate
description of the micro-structure of the crystal in
any case, it would seem convenient to retain the sim-
pler description of this form—the rectangular distribu-
tion function—for calculations of the type described
in this paper. We have here derived expressions and
curves in terms of ¢ = QW(A460), and, from these
values, the values for any type of distribution function
may be readily synthesized.

The author would like to express his appreciation
to Drs J. M. Hastings and L. M. Corliss for stimulat-

ing his interest in this problem and for valuable eriti-
cism of the manuscript.
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